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thermodynamic parameters in solids 
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A method is proposed which permits identification of the reversible and irreversible 
thermodynamic processes occurring in solids as thermodynamic conditions vary, and 
definition of the contribution of each process to the whole. Theoretical values have been 
obtained of the ratio of the rates of change of enthalpy and volume as well as the ratio of 
the total heat and volume effects for a series of processes in solids. The method is applied 
to some actual special cases. 

1. Formulation 
Variation in the thermodynamic parameters of a 
solid may cause various physical processes, classified 
as follows: 

(1) Processes which are reversible at a limiting 
low transformation rate (e.g. phase transformations 
in a region where the phase equilibrium curve 
exists). 

(2) Irreversible processes which in principle can 
be made reversible at other values of the thermo- 
dynamical variables, pressure P, and temperature 
T; e.g. /3 ~ a and 7 -~ a transformations in solid 
gallium [1] belong to this class. 

(3) Processes which in principle cannot be re- 
versible; e.g. formation, motion and annihilation 
of dislocations. 

Processes that arise due to variation of thermo- 
dynamic parameters in solids usually occur in suc- 
cession, but some appear simultaneously. In order 
to investigate the processes caused by such 
variation, use is generally made of the heat and 
volume effects produced by temperature variation, 
the pressure being held constant (atmospheric or 
zero). It turns out that more complete information 
is obtained by measuring the heat and volume 
effects simultaneously, for example, during the 
annealing of hardened metals [2, 3]. 

This mode of investigation is based on the 
experimental regularity founded on the fact that 
each elementary thermodynamic process is related 
to a narrow range of heat Q, and volume A V, 
effect ratios [2, 3]. The width of this range is 
defined by conditions under which the process 
develops and is usually less than the error of 
measurement. It should be noted that these ranges 
do not overlap for the majority of processes. 

The processes are of two types: 
(a) Those where Q/V does not depend on the 

stage of development of the process, but depends 
on the conditions under which this development 
occurs (Q is the rate of enthalpy change, V is the 
rate of change of body volume). If the pressure and 
temperature remain constant during the process 
this ratio also remains constant throughout the 
process and is equal to Q/AV. This type of process 
includes, for example, a series of diffusional phase 
transformations, as well an annihilation of point 
defects and dislocations. 

(b) Those where Q/V depends on the stage of 
development of the process. To this type belong, 
for example, formation and healing of defects. 

Knowing Q, AV, 0., (z, Q/AV and Q/I) for 
various processes one can identify these processes 
by such characteristic features as the absolute 
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value of total heat and volume effects and their 
signs; agreement of nonagreement of the signs of 
Q(T, P) and 2xV(T, P); the ratios Q/A V and Q./( z, 
and equality or nonequality of their values; the 
reversibility of the process; the presence or absence 
of hysteresis when the process is reversible; and 
finally, the dynamics of heat evolution and the 
change in the body volume, i.e. the shape of the 
two families of curves Q(T, P) and I)(T, P). The 
process rate -- q~ is determined by the values of (~ 
and 12. If one of these values is known it is possible, 
for example, to evaluate how many defects partici- 
pate in the process per unit time. The stage of de- 
velopment of the process -A4~, that is, e.g. the 
number of defects participating in the process, is 
determined by the values of Q and AK Indeed 
for the general case, when the body goes from 
one thermodynamically nonequilibrium state to 
another at constant pressure and temperature, the 
rate of heat absorption is given by the formula 

0 = - -T  2 ~-~ , (1) 

where q~(T, P) is the Gibbs free energy. The rate of 
change of body volume may be defined from the 
relation 

_ ( 2 )  
OP 

In the majority of actual cases, the temperature 
and the pressure vary during the process but 
slowly enough for an appreciable part of the 
process to occur at almost unchanged values of T 
and P. It means that Equations 1 and 2 are appli- 
cable at very small time intervals, during which the 
values of TandPremain constant while the process 
itself makes marked progress.. 

Let us now consider Q/V and Q/AV for the 
various elementary processes responsible for hard- 
ness in solids. Those most important are as follows: 
phase transformation; formation, annihilation and 
motion of point defects (vacancies and inter- 
stitials); formation, annihilation and motion of dis- 
locations (including dissociated ones); formation 
and annihilation of dislocation walls; formation 
and relaxation of dislocation tangles or pile-ups; 
motion and redistribution of impurities in the 
crystal; formation, annihilation and motion of the 
grain boundaries; formation, development, motion 
and healing of non-uniformities (pores and cracks). 
Each of these processes is connected with certain 
peculiarities of the rate of heat evolution and the 
rate of change of volume. 
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2. Phase transformations 
The effective and reliable way to study phase 
transformations is to measure the heat evolution 
and volume change rates (with pressure and tem- 
perature) simultaneously. I f  a phase transformation 
occurs in the course of experiment, peculiarities in 
these rates arise. 

During a first order phase transformation, the 
latent heat of the phase transition is evolved (or 
absorbed). A second order phase transformation 
(as well as a first order one) is accompanied by 
abrupt jumps in the compressibility, heat capacity 
and thermal expansion coefficient. A first order 
phase transformation may be simply and reliably 
identified by the rate of heat evolution and 
volume change, as well as by heat and volume 
effects. A second order phase transformation may 
also be identified by the rates of the enthalpy and 
volume change since these rates (at definite rates 
of pressure and temperature change) depend on 
the compressibility, the heat capacity and on the 
thermal expansion coefficient which are different 
for different phases. Let us consider a phase trans- 
formation of the first order. 

2.1. Reversible first order transformations 
In the case of a reversible first order phase trans- 
formation, where there exists a phase equilibrium 
curve, Po = P0 (To) (P0 and To are the co-ordinates 
of the points of the phase equilibrium curve) one 
may neglect the effects caused by the presence of 
the interphase boundary and, taking into account 
the following relations 

~(Po, To) = 0, dpo - dp~ dTo, (3) 
dTo 

one may define from Equations 1 and 2 the ratio 
of the heat evolution and volume change rates 

(~ dpo 
11 - To d~o" (4) 

Equations 1 to 3 yield, for the ratio of the heat 
and volume effects, the Clapeyron-Ctausius 
equation 

Q _ To dp~ 
~V d-Too" (5) 

It follows, from the comparison of Equations 4 
and 5, that a reversible first order phase transfor- 
mation should be considered as a type (a) process, 
neglecting the effects due to the presence of the 
interphase boundary. It is noteworthy that a finite 



rate of phase transformation is not the only cause 
of the deviation of the ratio of heat content and 
volume change rates from the Clapeyron-Clausius 
equation. Phasetransformations in solids are 
accompanied by rather small heat evolution and 
volume changes, so that initially the interphase 
boundaries contribute greatly to the volume and 
enthalpy change rates of the transformation. The 
relative interphase boundary contribution de- 
creases during the later development of the trans- 
formation, and the ratio of rates approaches the 
Clapeyron Clausius equation. 

2.2. Actual diffusional first order phase 
transformations 

A first order phase transformation is usually a non- 
equilibrium irreversible process. There are two 
limiting cases: 

(1) The time required for the temperature to be 
uniformly spread throughout the specimen is 
much longer than that needed for the nucleus to 
be formed and the phase transformation to occur. 
In this case the rate of the phase transformation is 
limited by heat conductivity (the rate of the heat 
input and output). This case corresponds to low 
transformation rates. The temperature of the 
initial phase is that of the phase transition, To. If 
the transition 1-+2 occurs, e.g. endothermally, 
the surface temperature of the solid will have 
T >  T O and the ratio of heat to volume effects 
may be written as 

f; (A-Q-v)7, ( ~ - - V ) 1 + Q ~  C(p2) dT = o (6) 

T o 1 +2xV~ol(Td2Vo2dT "J T o 
where Qo, AVo and (Q/zXV)% are the heat and 
volume effects and their ratio at the limiting low 
transformation rate, C~ ) the heat capacity at 
constant pressure, % = Vool OVi/3T is the co- 
efficient of thermal expansion, and Voi is the 
volume of material in the ith phase at tempera- 
ture To. 

For the reverse transition 2 -+ 1, T <  To and 

(Qv)T-~-(Qv)To[I'~-Qolf; ~ 

[ f: To 
x 1 -{- AV'o01 0/1 Vol d (7) 

It may be seen that in this limiting case, the 
heat and volume effects and their ratios are 
different for the direct and reverse transformation. 

(2) The time required for the temperature to 
become uniform is much shorter than the time 
needed for the nucleus to be formed and the 
phase transformation to occur. Here the phase 
transformation rate is restricted by the kinetic 
processes (the nucleus formation and the diffu- 
sion), and this corresponds to high transformation 
rates. As the temperature is almost uniform 
this process resembles to some degree an equi- 
librium process, and the transformation tempera- 
ture depends on the transition rate. When the 
pressure remains constant but the phase trans- 
formation temperature are different, TI and 
T2, the heat and volume effect ratios are re- 
lated by the expression 

C %g,,~2) _ Cp(1)) dT 1 + Q-1 (T1) jT 1 , '~e  

,7" 
1 + A W  1 (TI)  t_ 2 [0/2 V2 ( T 1 )  - -  0/1 V1 (T1)] dT 

(8) 

where Vi is the volume of the substance in the 
ith phase. 

It should be noted that if, for example, the 
transition 1 -+ 2 is endothermic at the transition 
temperature Tf  > To, then for the reverse trans- 
ition 2-+1,  we have T ~ < T o .  Thus the heat 
and volume effects, as well as their ratios, are 
different in this case for the direct and reverse 
transitions, contrary to the case of  reversible 
transformation. 

In practice, the onset of  transformation usually 
occurs as the first limiting case mentioned above, 
while the end of transformation occurs as the 
second. Different shapes of the hysteresis con- 
stitute special features of first order phase trans- 
itions of the first class. 

As is well known, when some parameters (e.g. 
the pressure) are changed, second order phase 
transitions may be turned into first order ones. 
The point where the curves on the P - T  diagram 
corresponding to various transitions make the 
continuation from one to the other is known as 
the Curie point. 

It should be noted that phase transformations 
in solids are often treated as second order, since 
the accompanying heat and volume effects are 
so small that they cannot be measured or are zero 
at zero (or nearly zero) pressure; that is the phase 
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transitions are second order only at an isolated 
point on the P-T  diagram. 

If the differences between the heat capacities, 
coefficients of thermal expansion and compressi- 
bilities of the phases near the transition point 
do not obey Ehrenfest's relations, then the trans- 
ition latent heat and transformation volume effect 
depend on temperature and pressure; that is they 
vary along the phase equilibrium curve. It may 
be shown that in this case, heat and volume 
effects, undetectable at the atmospheric pres- 
sure, increase with pressure and attain measur- 
able values. At high pressures, the increment (due 
to pressure) of heat and volume effects at the 
transition is proportional to the discrepancy 
between, on the one hand, the relations of differ- 
ences of thermal capacity, compressibility and 
the thermal expansion coefficient in the phases 
near the transition point, and on the other, Ehren- 
fest's relations. 

Thus investigation of total heat and volume 
effects on phase transformation under high pressure 
greatly helps the identification of the true order 
of the transition. Comparison of the heat and 
volume effect ratios with the Clapeyron-Clausius 
equation opens the way to answering questions 
about the degree of irreversibility of a first order 
transformation of the first class. 

Now let us turn to first order phase trans- 
itions of the second class. We shall assume that at 
some pressure Po and temperature T this phase 
transition is reversible (that is, P0 and Tlie on the 
phase equilibrium curve) and the ratio of heat to 
volume effects is (Q/AV)Po, 7". 

If at the same temperature T and the pressure 
P4:Po, one of the phases, for instance phase 1, 
may exist only in a metastable state, then the 
transition can occur only in one direction; from 
metastable to the stable state, 1-->2. For this 
transition the ratio of heat to volume effect is 
given as 

SV= t, V(Po,T) 
o,T 

Vt(Po,T) r e  , r & dP" 
+ J,'ode 

V.•o,r) r" de, r"o de" 
Q(Po,T) JPo Jp, K2(P ) 

" V l ( ' O ,  T) FPo , ~ 0 ~ _  fPoL2de, ] 
j 

v2 (eo, T) (~o de' 
• I + A V ( P o , T )  jp ~ ' )  

f ,  | 1' + AV(Po,T) po "2(P')] ' 

where Ki = -- V/(Po, T)(OVi/OP) -1 
modulus of the ith phase. 

is the 

(9) 

bulk 

2.3. Second derivatives of thermodynamic 
potentials at reversible phase 
transitions 

In the case of an equilibrium reversible transition 
from phase 1 into phase 2, one of the equilibrium 
conditions along the curve of the transition points 
requires equality between the Gibbs free energies 
in the two phases. 

~b,(Po, To) = q~2(Po, To). (10) 

Here the pressure Po is not an independent vari- 
able but depends on the temperature; Po =Po 
(To). 

Differentiation of the Equation 10 with respect 
to temperature yields the Clapeyron-Clausius 
equation 

$ 2 - - $ 1  = ~xS = AV dP~ (11) 
dTo 

Let the jump of volume along the transition point 
curve be a known temperature function; 

V2 -- Vl = A V  = f(To) (12) 

(in the special case of transition of the second 
order f(To) = 0). Then it follows from Equations 
11 and 12 that the entropy jump along the trans- 
ition point curve is 

A~S = f ( T o ) ~ o  (13) 

Differentiation of Equations 12 and 13 with re- 
spect to temperature yields 

A ~--~ + - - A  
dTo ~ -  

o 0 

To dTo \~--~& = 

df 
= (14) 

dTo 

df dPo d2Po 
dT--~o d--Too + f(To) d--~-o (15) 

In the special case of a second order phase 
transition order, where f (To)= O, Equations 14 



and 15 acquire the form of relations derived by 
Ehrenfest in 1933. 

Now let us consider the formulae for the 
jumps of the other second derivatives of thermo- 
dynamic potentials. At an equilibrium phase 
transition the pressures in both phases remain 
unchanged; 

P1 ~-- /02 = P (16) 

where we take Pa and P2 to be functions of 
volume and temperature while the volume of each 
phase, V~ and 112 may be treated as a function 
of the temperature along the transition point 
curve in the P-T diagram. Differentiation of 
Equation 16 with respect to temperature with the 
aid of Equation 12 gives 

A(3P] + d V ,  A(0.~)T + (OP '~  df 0 

\aTJv d~o o I--~Z/To-d--~o = 
(17) 

This may be rewritten as 

\OT/v d7~ O-V + ~ To - -  dTo : o 
0 

(18) 

Similarly, assuming that the left side of Equation 
13 is a function of volume and temperature, 
while the volume of each phase, Va and V2, 
along the curve of the P-T diagram is a tempera- 
ture function, and differentiating Equation 13 
with respect to temperature with the aid of 
Equation 12, we get 

df dP0 d2Po 

dTo ~o + f dTg 

ACv + __ A l - - I  
To dTo dTo 

ACv+dV2 (3P)v+(3P t df (19) 
7"0 dTo \aT/v, 

In the special case of a second order phase trans- 
ition, f(To)-~O and VI = V2 = V. Due to the 
coincidence between Equation 17 and 18, as well 
as Equation 19, we get the same result as that 
obtained by Landau in 1937. 

2.4. Martensite transformation 
identi f icat ion 

Martensite transformations are accompanied by 
often significant inner stresses. This leads to an 
essentially thermodynamically irreversible char- 
acter for martensite transformations, even under 
very low heating and cooling rates. As a result 
we have a finite difference between temperatures 
of the beginning of direct and reverse transforma- 
tions. Elastic energy is often an essential part 
of the balance during martensite transformation, 
and. this leads to a significant different between 
Q/V and Q/AV during transformation. Therefore 
the martensite transformations usually belong 
to the process of type (b). 

3. Point defects 
Let us now discuss the case when the concentra- 
tion of point defects is small and the interaction 
of point defects can be ignored, a condition 
which is usually satisfied. Let g =g(P, 7) be the 
change in the Gibbs free enrgy per defect. Then 
the atomic equilibrium concentration of point 
defects is 

c o  

where k is Boltzmann's constant. 
In course of plastic deformation, excess non- 

equilibrium point defects can appear, which are 
able to move and to annihilate. For the annihila- 
ting vacancies, the following relation holds [2] ; 

Qv Ev 
V - , (21) 

AVv ~v 

where E v is the work required for the formation 
of one g-atom of vacancies (E v = 17.9kcal (g- 
atom) -1) for copper at atmospheric pressure [4] ), 
V is the volume of one g-atom of the specimen 
substance, and a,, is the atomic volume fraction 
occupied by a vacancy. 

For interstitials we have, by analogy with 
Equation 21, 

1/ Qi = • ( 2 2 )  
A V  i Oq - -  1 

Here E i is the work required for the formation 
of one g-atom of interstitials, and oq is the atomic 
volume fraction occupied by one interstitial. 

The work required for formation of one g-atom 



of point defects is related to g by the expression 

E = - -NL/a  ~ , (23) 

where N i is the Loschmidt number. 
At small concentrations of point defects, when 

their interaction may be neglected, the above 
annihilation of excess point defects is a process 
of the type (a). However the ratio of heat effects 
to volume ones, Equations 21 and 22, varies a 
little at different temperatures. The temperature 
at which the main part of the excess defects anni- 
hilates depends on the process kinetics (in partic- 
ular, for example, on the temperature change 
rate during the annealing). 

Hence we can somewhat alter the ratio of heat 
effects to volume ones by changing the con- 
ditions under which the process is developed (e.g. 
the rate of temperature change during annealing), 
but all the possible values of these ratios are 
confined in a narrow range. 

Entropy is one of the most important thermo- 
dynamic functions for both reversible and irre- 
versible processes. In the case of one point defect 
it consists of two parts, configurational and 
nonconfigurational. 

Configurational entropy = 

--k [ln c + l -C ln  (1--C)] 
C 

where C is the point-defect concentration (equi- 
librium or not). Nonconfigurational entropy 
(for both equilibrium and nonequilbirium defects) 
may be defined from 

E ~lnCo s - t-klnCo = kT +klnCo. 
NLT 3T 

(24) 

The motion of point defects within an homogen- 
eous crystal is not accompanied by the evolution 
of heat or by body volume change. The redistri- 
bution of point defects in a crystal containing 
sources of inner stresses (e.g. dislocations) may be 
described in the same way as that of impurities. 
The heat evolution and body volume change 
resulting from impurity redistribution will be 
treated in Section 5. 

Frenkel pairs may be formed in solids during 
irradiation. A Frenkel pair is a vacancy bound to 

an interstitial, so if Frenkel pairs annihilate, 

QF EF 
v - ( 2 s )  

A V F ( l  v -1- o/i - -  1 

where EF is the work required for the forma- 
tion of one g-atom of Frenkel pairs, which in- 
cludes interaction energy and so it depends on 
the distance between the defects in a pair and 
orientation of the pair. Formation of a Frenkel 
pair leads to a volume change, which according 
to the linear elasticity theory is a sum of volume 
changes due to the formation of a vacancy and an 
interstitial. 

4. Dislocation processes 
4.1. Dislocation contribution to the crystal 

volume and enthalpy 
It turns out that the main contribution in the 
dislocation energy is from long-range elastic 
fields, dislocation cores contribute no more than 
10 to 15% [5]. Numerical calculations [6] also 
show that the contribution of dislocation cores 
to the change in crystal volume is also no more 
than 10 to 15% of the total volume change due 
to the dislocation's presence. Therefore we shall 
ignore the dislocation cores henceforth, and only 
consider their elastic fields. 

The volume change for a crystal containing 
dislocations may be described only within the 
framework of nonlinear elasticity theory. 

Zener [7] was the first to study the volume 
change in case of an elastically isotropic crystal 
containing dislocations. He deduced a formula 
similar to that for the elastic energy stored during 
the deformation of isotropic continuum. 

Seeger and Stehle [8] have developed the 
microscopic theory of volume effects for an 
isolated screw dislocation situated in a crystal of 
definite shape, and this has been applied to par- 
ticular types of dislocations [ 11, 12]. Their results 
may be obtained rather simply by the thermo- 
dynamic method [9]. A consistent nonlinear 
theory of volume effects in anisotropic crystals 
containing dislocations was developed by Toupin 
and Rivlin [10]. 

It can be shown that in the general case, when 
a cubic crystal belonging to one of the most 
symmetrical subgroups, O, O h or T la is subjected 
to the action of an arbitrary high hydrostatic 
pressure, the change in the crystal volume due 
to the presence of dislocations is given by the 



formula 

AV= as +bf(v)u~.dr q- C f(Vj(b/21 -}-/122 +u23)dr ,  

a = - -  2C166 -1- C144 -~ Cl l  "~- 2C1z + 4C44 -- 2P 

Cll  hi- 2Ct2 + P 

Cn2 + 0.5Ca2a -- 0.5Cn + C12 + P  

Cll +2Ca2 + P  
b = -- 

r ----- __ 0 . 5 C l l l  - -  0.5C123 - -  2C166 - -  C144 q- 2Cn -- 2C,2 -- 4C44 

C l l  + 2Ct2 + P  
(26) 

Here V is the crystal volume, Cik and Cik  I are the 
crystal elastic moduli of  the second and third 
orders, respectively, ulk is the tensor of linear 
deformations caused by the presence of disloca- 
tions in a hydrostatically compressed crystal. 
This tensor may be obtained from the linear 
deformation tensor for dislocations in the crystal 
without external pressure. The procedure is as 
follows: we substitute b (P) for the Burgers vectors 
b, and the resolved moduli for the elastic moduli 
of the second order, 

Cihlrn ~ Ciklrn = Cimm(P) 
+ P ( 6 i k 6 l m  - - 6 , 7 6 k m  ~ 6imC3l~l) 

(27) 

Equations 26 and 27 are in accord with the results 
obtained for the corresponding special cases in 
the references cited. 

The dislocation contribution to the crystal 
enthalpy is 

Q = �89 Cimm f UikUtra dr (28) 
I0 

which in the case of a cubic crystal gives 

Q = �89 C'44 f(v3uileuik dr +1a, Z ~v)U~i dr 

+ �89 -e,= -2C44)f(v)(u~, +u22 + u323)dr 
(29) 

4.2. Heat to volume effect ratio 
Equations 26 and 29 yield 

O 2C44 + C12/3 + (Cn - C12 - 2C44)6 , 

AV 2a + 2b/3 + 2c 6 ' 
where (30) 

~(v~(U121 + u22 + u]a)dr s 
6 = "  /3 

f(v Ulku~kdr f ulkulkdr 
-(v) (31) 

and for dislocations [13] 

0 ~<6,6 ~< 1 (32) 

One can see from Equations 30 and 31 that for 
"different types of dislocation or for different 
distributions in the crystal there are specific ratios 
of heat to volume effects. The values of these 
ratios may differ by no more than 30% at usual 
magnitudes of elastic moduli [13] but may also 
be exactly the same [14] (e.g. in the case of 
randomly distributed dislocations and dislocations 
gathered in the polygonal walls). 

For the elastically isotropic medium we may 
write 

G1 - G~ = 2G4 

8C456 + C123 -~ 6C144 = C m  
(33) 

2C144 + C12a = Cl12 

2C4s6 + C144 = C166 

coefficients before 6 in Equation 30 are and the 
zero .  

That is why knowledge of one structural 
factor/3 is enough for the model of the elastically 
isotropic medium. In the case of anisotropic 
crystal we may estimate both/3 and 6 from the 
approximation of the elastic isotropic medium, 
e.g. for the screw dislocations we have in this 
approximation /3 = 6 = 0. For the straight edge 
dislocations in the unlimited crystal we may 
write 

2(1 -- 20) 2 1 + 2(1 -- 20) 2 (34) 
/3 -  1 + (1 - -2o)  2 ' 6  - 2 + 2(1 - -2o)  2 ' 

where o is the Poisson's ratio. 
If  the dislocation distribution is not uniform, 

the values of heat and volume effects may differ 
greatly from those for the case of uniformly 
distribution [14]. However, their ratio varies 
little after redistribution of the dislocations. 
Thus, e.g. for pile-ups in the Stroh model [15] 
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we get, according to the approximation adopted 
in [16], 

16(sll + 2s12) 2 

fl = 13s~1 + 29s~2 + 6sl~s~2 + 5s~4 

13s~1 + 29~2 + 6SllS12 

8 = 13s~ + 29s~2 + 6s~,s12 + 5s~ ' (35) 

where s~k are the elastic constants. It turns out 
[16] that for the piled-up dislocations the values 
of heat and volume effects may be an order of 
magnitude higher than those for randomly distri- 
buted dislocations, but the value of their ratio 
differs little in these two cases. 

4.3. Dissociated dislocations 
Let us now take the case where a dislocation 
with Bugers vector b3 dissociates into two partial 
Shockley dislocations with Burgers vectors bl 
and b2 [17]. 

Here the volume effects get contributions 
not only from each partial dislocation but also 
from the overlapping of their fields. The complete 
volume effect is 

A V :  (AVI q- AV2)  [1 + 1 (in L_/ln Lqt] (36)  
4 \  ro] 27r]] 

where A Vx and A V2 are the volume effects due 
to each of the partial linear dislocation, ro the 
space between partial dislocations L the crystal 
grain size and qD is the limiting value for the 
wave vector of the phonons in the Debye theory 
of heat capacity. The total energy of the dissoc- 
iated dislocation, including the stacking fault 
energy, is 

g = ( g l + g 2 )  1+~-  l + l n L / l n  (37) 
rol z l r / j  

Here ~z and g2 are the energies of each partial 
dislocation. 

The ratio of heat to vohune effect for dissoc- 
iated dislocations (Q/AV)dd is directly related to 
that for perfect dislocations (Q/AV) d by the 
formula 

(-~--V)cld=(~-V)d[ l+[4InLqt)+lnL \ 27r ~o) ] "  -1 

(38) 

Since as a rule In (LqD/2n) ~ 5, it may be con- 
cluded that the heat to volume effect ratio for 

*This addition is due to the fact that the local Gibbs free 
the value predicted by the elasticity theory. 
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perfect dislocations differs from that for dissoc- 
iated ones only by a few percent. 

The results given above show that such pro- 
cesses as polygonization, dislocation annihilation 
and relaxation of approximately one-type dislo- 
cation clusters may be accurately regarded as 
processes of type (a). In the case when the main 
contribution to the change of the enthalpy and the 
crystal volume on recrystallization is provided by 
the dislocation annihilation, the recrystallization 
itself may also be regarded accurately as the 
process of type (a). 

It should be noted that, just as in the case of 
vacancy annihilation, the change in the annealing 
rate leads to a shifting of the temperature inter- 
vals of the dislocation processes and thus to a 
small variation of the heat and volume effects 
ratio. 

5. Redistribution of point imperfections 
Let us begin with redistribution of point imper- 
fections (point defects, impurities) in the field of 
elastic stresses. The point imperfections have an 
inhomogeneous equilibrium distribution [5] 
which depends on the interaction energy between 
point imperfections and deformation. Calculations 
carried out within the framework of the linear 
elasticity theory [5] represent the point imper- 
fection as either a singularity [18], or a con- 
tinuous inclusion whose volume is not equal to 
that of the cavity in the matrix and whose elas- 
tic properties differ from those of the matrix. 
According to these calculations the interaction 
of the point imperfection with deformation may 
be described by the formula 

Adp = --Kvouu (39) 

where Aq~ is the variation of the Gibbs free energy 
from the interaction between the point defect 
and deformation, g is the reduced bulk modulus 
of the cubic crystal, Vo is the crystal volume 
change caused by the introduction of the cubically 
symmetric point imperfection, u u is the dilatation 
due to internal deformation of the point imper- 
fection. 

The elasticity theory fails in the region near 
the point imperfection as well as in the imperfec- 
tion itself, so that Equation 39 may be inaccurate. 
When smooth deformations are considered, the 
expansion of the addition* to Equation 39 into a 

energy in and near the point imperfection deviates from 



series, by deformation and the symmetry of the 
problems, result in the following expression; 

Ad) = - - (Kvo + e)uzt + . . .  (40) 

It appears that e = 0. To prove this let us con- 
sider the special case where deformation, uu, 
is due to a change in the pressure from P to 
P + z2u ~ From Equation 40, 

No 
2xq~ = (Kvo + e) ~ -  (41) 

On the other hand, if ~b(P, T) is the Gibbs free 
energy of the crystal containing imperfections, 
subjected to the external pressure P, then the 
system Gibbs free energy will be altered with the 
pressure change by •(P + 2u ~ 7 3 -  r 73. This 
variation consists of the changes caused by the 
interaction between deformations and imper- 
fection, Equation 41, and changes in the Gibbs 
free energy of the ideal crystal caused by the 
pressure variation r + 2u~ 73 -- Co(P, 7). 
Therefore it may be written 

zX~ = ~(e + ae,  r )  - ~(P, 73 - [~o(e + ae,  73] 

- -  Oo(e,  7)1 (42)  

Expanding Equation 42 into a series for small 
z2u ~ and considering only the first term of the 
series, a comparison of the result with Equation 
41 gives e = 0, (here the following thermodynamic 
relations were used: 

where V and Vo are the volume of the crystal 
containing a point imperfection and of the ideal 
crystal, respectively; V -  Vo = Vo). 

Thus Equation 39, although derived by means 
of the models (inadequate for a point imperfec- 
tion) of the elasticity theory, turned out to be 
correct. 

If a single point defect reaches the dislocation 
axis, the exisitng kink in the dislocation line is 
shifted by one atomic unit; a pair of point defects 
can give rise to formation of new kinks and hence 
to changes in the crystal Gibbs free energy and in 
the volume (according to the formulae given in 
the preceding sections). 

Penetration of the impurity into the dislocation 
core results in heat and volume effects. Dislocation 
cores are very important for such effects in some 
cases of dislocation ageing [19]. The dislocation 

ageing is generally a type (b) process. However 
at low impurity concentrations, when the main 
contribution to heat and volume effects is pro- 
vided by terms proportional to the first degree of 
the impurity concentration, the values Q and AV 
are proportional to the amount of impurity, and 
an approximation treating the dislocation ageing 
as the type (a) process is not so bad. If the anneal- 
ing rate is varied, the temperature interval of the 
dislocation ageing is shifted, changing the heat 
to volume effects ratio. 

6. Grain-boundary contribution to 
heat and volume effects 

6.1. Contribution to the enthalpy 
First of all we evaluate the energy of non-disloca- 
tion boundaries which are not the stress sources 
in the material. Let every thousandth crystal atom 
belong to the boundary, so that the general 
boundary area amounts to ~ l0 s cm -1 (per cm3). 
The total boundary energy is about 10 8 ergcm -3 
for a density of boundary surface energy 3' = 10 3 
erg cm -2. This approximately corresponds to the 
dislocation stored energy for a density of dis- 
locations of nearly 1011 cm -2 . It follows from such 
an evaluation that in the case of a time-grain 
structure, the boundary energy can contribute 
greatly to the crystal's total energy and this contri- 
bution should be taken into account for each 
special case. In a coarse-grain material of sufficiently 
high dislocation density the boundary contribution 
to the total energy is insignificant. 

There is one more mechanism by which the 
grain-boundary energy of a polycrystal may be 
increased; the stresses due to the interaction 
between the adjacent grains. Let ro denote a typ- 
ical stress value, and/1 be the shear modulus. The 
order of magnitude of the energy associated 
with these stresses is ~ ~/.t -1 r~. 

If r o = 3  x 10-3grn, # =  1012 ergcm -3, we 
get g =  107ergcm -3, an order of magnitude 
below the boundary energy in a fine-grain material. 
In particular, the stresses ro in the noncubic 
crystal may be of thermal origin and in the case 
of a rapid cooling (from ~ ! 0 3 K  to room tempera- 
ture) may contribute considerably to the distor- 
tion energies (up to 1 0 9 erg cm -a). 

Let us now consider the case when the grain 
boundaries serve as the stress sources (e.g. disloca- 
tion boundaries). If the dislocation density in the 
crystal is high (of the order 1011 cm -2 or more) 
the number of dislocations in the grain boundaries 
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is at least several times smaller than the total 
number of dislocations in the crystal. If  the 
boundary stresses vanish rapidly-with increasing 
distance from the boundary, the boundary dis- 
location contribution to the energy is at least 
several times smaller than that from the crystal dis- 
locations.* Thus in crystals with a high dislocation 
density, such boundary dislocations contribute to 
the total distortion energy of the crystal much less 
than randomly distributed crystal dislocations. If  
in such cases dislocation boundaries and crystal 
dislocations disappear at recrystallization, the main 
contribution to the heat effect is provided by the 
annihilation of randomly distributed dislocations. 

I f  the crystal dislocation density is not high, 
the equidistant dislocation boundary contribu- 
tion to the energy may be significant and should 
be considered in each special case. Boundaries 
which consist of randomly situated dislocations 
have energy which is an order of magnitude (or 
more) higher than that of equidistantly situated 
dislocation boundaries of the same number of  
dislocations. 

6.2. Contribution to the volume 
Let us now evaluate the grain-boundary contribu- 
tion to the polycrystal solid volume. We first 
consider the case of  nondislocation boundaries 
when the boundaries are not stress sources in the 
material. 

Let each thousandth crystal atom belong to 
the boundary. Assuming that the substance 
density in the boundary is not less than in the 
melted metal, then for copper one finds that 
the relative volume effect created by the boun- 
daries does not exceed 5 x 10 -s . This is an order 
of magnitude less than the volume effect caused 
by randomly distributed dislocations of 1011 

c m - 3  The volume effect due to interaction of ad- 
jacent grains of the order A V / V ~  5(r0//~) 2 and is 
5 x 10 -s at ~'0 = 3 x 10 -3 ~. When a polycrystal 
consisting of non-cubic crystallitesis cooled rapidly 
from T to To we have, since the coefficient of 
thermal expansion a depends on direction 

To ~ (am= -- arain) ( T - -  To )g ~ 10-2K. 

at am~, -- ami~ = 10 -s K-1 T - -  T O ~ 10 3 K, and 
zSV/Vis approximately 5 • 10 -4. 

The thermal stresses are low at recrystalliza- 
tion, since it tends to relax the inner stresses; 

the boundaries do not contribute significantly 
to the volume effect. Therefore the main contribu- 
tion to the volume effect during recrystallization 
is provided by dislocation annihilation. 

Let us now consider the case when the grain 
boundaries are the sources of inner stresses. 
Since the formulae describing the enthalpy in 
the deformed crystal are of the same structure as 
those derived for the volume change, the relative 
contribution from the dislocation boundaries to 
the volume effects will be the same as that to the 
heat effects. 

Thus during recrystallization the main contri- 
bution to the volume effects, in the case when the 
equidistant dislocation boundaries are obliterated, 
is provided by the annihilation of random crystal 
dislocations as in the case when nondislocation 
boundaries are oblitered. The contribution of the 
randomly situated dislocations on the boundaries 
ought to be taken into account. 

7. Heat and volume effects in crystals 
containing cracks 

A crack may be desribed in terms of dislocations 
if the structure of  the dislocation core is con- 
sidered. The nature of the dislocation core was 
studied by several authors [15, 20 -28 ] ,  and the 
results of these investigations are summarized in 
[29]. It is shown that when the Burgers vector is 
equal to 3 to 4 interatomic spaces or more, the 
superdislocation core becomes hollow and a 
wedge-like crack appears. The energy of the unit 
length of the wedge crack with Burgers vec to r  
ub is given by [30] 

8 lav~b 2 L 
L 4rr(1--o~) In ~ u  +'Y(ub+x/(u2bZ +4h~Z)) 

(43) 

Here hv is the altitude of the wedge-crack. The 
first term in Equation 43 gives the contribution 
of the deformation around the wedge-crack to the 
crystal elastic energy, the second the surface 
energy of the crack cavity. The volume change of 
the crystal due to the wedge-crack is, per unit 
length, 

AV L 
= fu~b 2In ~ +�89 (44) 

Here f i s a  factor of the order of 10 and depends 
on the crystal elastic moduli of the second and 

*We have such a situation when the boundary consists of equidistantly situated dislocations. 
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third order; the first term in Equation 44 is the 
crystal volume of  the crack cavity. The entropy 
contribution for the cracks is small enough so that 
the Gibbs free energy of the unit length of a crack 
coincides with the enthalpy and is 

r=L-4 i-  In 
P 

+ 7(vb + X/(v2b 2 + 4h~)) + -~vbhv, (45) 

where ~ and a are the reduced shear modulus and 
the Poisson's ratio respectively. The equilibrium 
altitude of the wedge-crack is defined by the con- 
dition 

Ohv (C/L) = 0 (46) 

From this condition we have 

~v2 b 2 
Pbvh v + 8Th~(v2 b 2 Jr- 4hv2) -1/2 = 27r(1 - -  o)  

(47) 

If pressure is not extremely high, so that hv >> vb, 
Equation 47 may be simplified to 

P2b 2 

hv - 27r(1 -- a) 47 + Pbv" (48) 

At extremely high pressure conditions we may 
run into a case when hv <vb .  For this case, 
Equation 47 yields 

vb 
hv . . . . . . . . . . . . . . . . . .  1 -- d 27rP' 1 -- a - < 2rrP. (49) 

The surface energy 7 may be estimated as /,b/ 
4rr(1 -- o) [30]. In this case, at P = 0, instead of 
Equation 48 we have hv = �89 Using this value 
and Equation 44, we get that the crack cavity 
volume is larger than the elastic deformations 
volume effect if 

V > V o =  4f ln  (Vo2~) . (50) 

For f =  5, In (L/vgb) = 5 we get Vo = I00. 
The ratio of heat content and volume change 

rates during the processes of crack-alteration 
(formation, growth and healing) depends on the 
degreee of  development; that is, such processes 
belong to the type (b). In addition, the relation 
mentioned above certainly depends on tempera- 
ture and pressure and hence varies with the pro- 
cess rate since the temperature and pressure 
intervals of  the process development are shifted. 

8. Heat and volume effects in the crystals 
containing pores 

Vacancies may form complexes which may grow 
into pores. For the case of annihilation of excess 
vacancies in copper, the heat to volume effects 
ratio is 1.75 x 101I ergcm -a. According to G. 
Vineyard's calculation [3t] the heat to volume 
effects ratio in copper makes up 2.3 x 1011 erg cm -3 
for annihilation of divacancies, and 1.3 x 101t 
erg cm -3 for annihilation of trivacancies. Vine- 
yard's calculations for tetra-, penta- and hepta- 
vacancies are widely scattered, following the 
general rule that the higher the number of vac- 
ancies in the complex, the lower the heat to vol- 
ume effects ratio on the annihilation of the 
complex. The ratio is the highest for divacan- 
cies as expected, since divacancies are elongated 
in one direction most. 

The energy evolved when the next vacancy 
joins the complex decreases with the growth of 
the complex size, until it becomes energetically 
unfavourable for a vacancy to enter a complex 
made up on N* vacancies. Complexes whose 
number of  vacancies is larger than N* may be 
conventionally regarded as pores. 

Let us consider the case when external pres- 
sure is much less than the crystal elastic moduli. 
According to the continuum theory it is energet- 
icaUy unfavourable for the vacancy to join a pore 
of the radius 

r < r* = 27V[Ev - P ( 1  -- %) V] -1 

because such attachment would be accompanied 
by the heat absorption. The radius r* corresponds 
to the number of vacancies constituting this pore, 

[ 7v ]3 No, (Sl) N* = 32~" E v _ p - ~ -  % ) i ) ]  

where No is the number of atoms per crystal 
unit volume. 

For copper at P = 0 ,  we get N * ~ 7 .  These 
estimations are beyond the limits of applicability 
of the continuum theory and therefore can be 
considered as qualitative only. Since the pore 
is a thermodynamically nonequilibrium defect 
it can be healed, in which case, just as with the 
healing of vacancies and their complexes, the 
volume of the body is decreased and heat is 
evolved. Here the following relation is valid 

Q 37 
- -  ~ + e .  ( 5 2 )  
2xV r 

11 



If  the specimen contains pores of various radii 
then, in Equation 52, 

r2) -1 (53) r = (~r /3) (~  j 

with the summations carried out over all the 
pores. 

At a definite pore size r l ,  the heat to volume 
effects ratio at healing is the same as for vacancies, 

rl = 33'% V [E v -- %PV] -1. (54) 

The number of vacancies making up such a pore 
is 

Nt = 367r3"ao~ VaNo(Ev - - % P I O  -a �9 (55) 

For copper a t P =  0,~we getN1 = 20. F o r N > N 1 ,  
the heat to volume effects ratio is lower than for 
vacancies, while for N < N1 it is higher. 

If  the specimen contains a large enough number 
of excess vacancies, complexes can be formed 
which are able to grow into pores. The growth 
of the pore due to coagulation of excess vacancies 
is possible when the total vacancy concentration 
dominates the local equilibrium vacancy concen- 
tration near the pore C, which is higher than the 
equilibrium vacancy concentration Co : 

F" 1 

C o e x p [  23' + P I - - % /  C [rkrNo k-~-~-o"_ (56) 

It is easy to see that large pores will grow first, 
the finer the pore, the more difficult and slow is 
its growth. Equation 55 yields C =  1.53 Co for 
copper at P = O ,  k T = 8 x  10 -4erg, and r =  
10 -6 cm. 

However, there may be another cause for pore 
growth. Let us assume that the specimen contains 
an impurity gas, insoluble or badly soluble in the 
metal. The gas atoms will evolve into the pores 
or their nuclei, thus stimulating pore growth. 
The heat and volume effects ratio for the vacancy 
coagulation into the pore is 

a 

AV 

33'r-1 + P0 (2- -~-~) - -Ev  V-1 
+ P  

1 - o ~  --~'o(NokT) -1 + (Co - - e - -  2 ~  -1)K-' 

where Po is the gas pressure in pores. If  this 
pressure differs from pore to pore then 

e o  = -1. (58) 

r is defined by Equation 53, g is the interaction 
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energy of the impurity gas atom and the metal, 
/3 is the atomic volume fraction occupied by gas 
atoms in the metal. 

It follows from Equation 57 that for 

'3 p 

( )1 Po P -- Po 
+ P  % + / 3 7 T k T  + - K  1 , (59) 

Equation 57 reduces zero; its sign is positive when 
P = Po = 0 and r < r=, and negative when r > r=. 
The physical reason for the fact that Equation 57 
reduces to zero is that when the pores of the 
radius r= are formed, the system neither evolves 
nor absorbs the heat, although its volume is 
changed. The number of vacancies constituting 
this pore at P = Po = 0 is 

N 2 ~--- gl(Zo 3 , (60) 

For the copper N2 = 95. 
When the vacancy coagulation into pores occurs 

without gas evolution into the pores, the volume 
of the body will always increase. Heat is evolved 
if r > r2, but absorbed if r < r2. 

All the processes which are accompanied by 
the change in the pore state belong to type (b). 
The ratios Q / A V  and Off? for these processes are 
somewhat different for various rates of  the pro- 
cesses. 

9. Simultaneous development 
Preceding sections were concerned with the 
ratio of enthalpy and volume change rates in 
solids, and the ratio of heat and volume effects 
for various processes that occur in solids when 
thermodynamical parameters are changed. Fig. 1 
shows the curves of the heat evolution rate and 
volume change for a sample of high purity platic- 
ally deformed nickel [32]. The first peak corre- 
sponds to vacancy annihilation, the second to 
recrystallization. Fig. 2 compares a f t?  and Q / A V  
for both processes; one can see that both pro- 
cesses prove to be of type (a) within the limits 
of experimental error. 

In preceeding sections it was found that the 
ratios under study depend on various parameters 
of  the solid. These parameters are at present 
considered as independent, and it is no surprise 
that the ratios under study are very different 
in one and the same metal. This difference can 
be used to identify elementary processes and 
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Figure 2 Enthalpy to volume change ranges ratio VQ/V 
(dots), and heat to volume effects ratio VQ/a V (line), 
for (a) vacancy annihilation and (b) recrystallization 
(data of [32]). 

separate of their various contributions. To the 
authors knowledge, there are no cases of coin- 
cidence of heat to volume effects ratios for differ- 
ent processes in any metal. Fig. 3 shows a typical 
scheme of heat and volume effects ratios for various 
elementary processes occurring during strength- 
ening and softening of solids. 

We now consider the case when several pro- 
cesses take place simultaneously. For example, 
if there are two simultaneous type (a) processes 
whose ratios {)1/V1 =AI(P ,  T),Q2/(z2 =A2(P, T) 
are known, one m a y  determine their contribu- 
tion, to the observed heat effects Q(t) and volume 
2iV(t) effects (the time dependences of tempera- 
ture and pressure are also to be measured). For 
example, the first process contribution to the 
heat effect is 

fot A~(P, T). Q , ( o  = 

[Q--A2(P, T)I>] dr (61) 

(it should be remembered that P = P(t), T = T(t)). 
Similar formulae may be deduced for Q~(t), 
2iVl(t) and 2iV2(t). It is noteworthy that the 
degree of process development (both of the types 
(a) and (b) is determined by the ratio Qi(t)/Q 
or by another ratio, connected with the first, 
AVi(t)/AVi. The elementary process contribu- 
tion to a composite process is given either by the 
fraction Qi/Q or by the fraction A Vi/AV connec- 
ted with the first. 

Thus the combined and simultaneous measure- 
ment of the enthalpy and volume changes rates 
in solids can provide information for identification 
of not only a single type (a) process but also two 
simultaneous type (a) processes, and allows 
evaluation of their relative contributions to heat 
and volume effects. If  more than two processes 
of type (a) occur in a solid simultaneously, contri- 
butions can be distinguished by means of simul- 
taneous measurement of Q, l)" and other physical 
parameters (e.g. electrical resistance and other 
transport characteristics). 

To follow the development of one process of  
the type (b) it suffices to measure Q and l)simul- 
taneously. Here the degree of the process develop- 
ment is determined by the ratio Q/V, and by 
each of the parameters Q(t) and 2iV(t), while 
the process rate is described by Q and l ~. If  this 
process is accompanied by others, additional 

13 



Q 

~/I/111///////// 
II/I/I////////// 

r 

//////////////// t 
'//////////////Z, t 

dislocation agein 9 

interstitial annihilation 

Frenkel pairs annihilation 

annihilation of dislocations, polygonal 
equidistant walls, dissociated dislo- 
cations, polygonization 

dislocation cluster relaxation, anni- 
hilation of random dislocation walls 
crack healing resulting in the for- 
mation of d~slocation wails 

divacancies annillilation 

annihilation of multivacancies 
and small pores 

vacancy annihilation 
pore healin 9 
coagulation of vacancies into small 
pores 

various possible phase transformations 

coagulation of vacancies into large 
pores and complexes 

~l ~ lirge cracks 

crack formation from dislocation clusters 

small cracks 

Figure 3 Typical scheme of heat and 
volume effects ratios Q/z~V for var- 
ious elementary processes. 

measurements of other physical parameters 
become necessary to interpret the picture. 

In both general case and the case when ratios 
coincide (the case of degeneration), the following 
features should be used for identification: 

(1) absolute values of total heat and volume 
effects, 

(2) the sign of each effect, 
(3) the signs of 0 and r;" which may be coinci- 

dent or not, 
(4) the value of ratios Q/AV and Q/V, 
(5) coincidence or noncoincidence of Q/&V 

and Q/V ratios, 
(6) possibility of direct and reverse transitions, 
(7) presence or absence of the hysteresis in 

this case. 

10. Application to real processes 
Mechanical and thermal treatments of metals and 
alloys give rise to a series of processes (phase 
transformations, formation, interaction and anni- 
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hilation of defects in the crystal structure). Solid- 
state physics has proposed methods for investi- 
gating phase transformations and various types of 
defect (separately or in combinations), when 
their concentration is not too high. Diffraction 
methods have helped immensely in the investiga- 
tion not only of phase transformations but also of 
linear defects in weakly strengthened metals, 
while the auto4onic microscope made it possible 
to observe single defects and the true structure 
of grain boundaries in metals. However, neither 
of these methods provides quantiative informa- 
tion about the nature of processes that arise 
during high strengthening of commercial alloys 
under real conditions. 

During the last two decades new methods were 
developed (solid state calorimetry and the volu- 
metric method) to study the variety of structural 
and phase transformations that occur at high 
strengthening and thermal softening of metals 
and alloys. As late as the fifties, attempts were 



made in Australia and the USA to determine the 
general quantity of vacancies and dislocations 
created during deformation of various metals. 
The authors used both volumetric and calori- 
metric measurements, and theoretical evaluations 
of  energy and volume of single defects (without 
consideration of their interactions). Boas [33] 
in his report at the Lake Placid Conference, 1956, 
gave data on the dislocation density in highly 
deformed nickel. These data were calculated 
on the basis of calorimetric and volumetric meas- 
urements carried out at Melbourne University 
and showed a discrepancy of an order of magni- 
tude. It was pointed out during the discussion 
of this report that the measure chosen for evalua- 
tion of the volume change per dislocation was 
rather rough, cracks and pores could be formed, 
and that dislocation ageing took place in the 
samples with high impurity content. 

Clarebrough et al. [34] compared the results 
of calorimetric measurements obtained by Aus- 
tralian and American authors with the results 
obtained by the English authors who measured 
the dislocation density by the method of diffrac- 
tion electron microscopy on samples of moder- 
ately deformed metals [35, 36]. The conclusion 
was drawn that the results for silver and nickel 
were in a good agreement, results for copper gave 
three times the discrepancy. Large deviation (by 
the order of magnitude) was found for aluminium, 
and this was attributed to the fact that a great 
number of dislocations disappeared from this 
metal during the preparation of thin foils. The 
authors of the report also compared data on the 
change of macroscopic density in samples of 
silver, copper and nickel (highly deformed by 
compression, e = 70 to 75%) with data on dis- 
location densities in the same metals obtained by 
the comparison of the results from calorimetric 
and electron microscopic measurements. The 
authors have found that the change in the crystal 
volume due to dislocations makes up 0.8 the 
atomic volume per atomic plane for nickel, 1.9 for 
silver and 3.7 for copper. Such a result for Ni and 
Ag varies little from the theoretical evaluation 
[8], which gives about 1.5 atomic volumes per 
atomic plane for edge dislocation and 0.75 for 
screw. The agreement for copper is much worse, 
perhaps because of the difference between calori- 
metric and electron microscopic measurements 
for this metal. 

Investigations carried out in 1963 in the Insti- 

tute of Metal Physics in Kiev (Academy of Sci- 
ences of the Ukrainian SSR) [1, 2] demonstrated 
that the processes occurring during heating of 
metals subjected to mechanical or thermal hard- 
ening might be anlysed more successfully in 
terms of heat and volume effects ratios. It was 
shown, in particular, that such an approach made 
it possible to separate reliably the point defect 
annihilation from the linear defect annihilation, 
and to distinguish both these processes from 
the carbide phase transformations in steels. Later, 
these investigations were extended to a series of 
metals [2, 32, 37] (results are summarized in 
[38]). The new approach also allowed investi- 
gation of the physical nature of high strength 
resulting from low-temperature thermo-mechanical 
treatment and from patenting [39-42] .  

On the basis of the approach described in 
this paper, a method was developed for deter- 
mining the plastic deformation limit within 
which the microcavities that have been formed 
do not yet contribute markedly to the strength 
and thermodynamic properties of the metal [16]. 
Here the fact was used that the heat to volume 
effects ratio on annealing highly deformed steels 
can deviate from its constant value, correspond- 
ing to the relaxation process of dislocation pile- 
ups, by no more than 0.1 if there are no micro- 
cavities in the crystal. Hence significant deviation 
of the measured ratio from this constant value 
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twist-deformed (nd/l = 0.8) b c c iron [37]. 
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Figure 6 Atomic concentration of excess annihilating 
vacancies which were at equilibrium with respect to dis- 
locations, and density of thermally mobile dislocations 
which have taken part in structure change and annihila- 
tion as functions of temperature (data of [37 ]). 
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indicates the appearance o f  microcavities in 
the sample. In fact, the measured change in the 

volume includes both  the change in the micro- 
cavities' volume and the change in the volume 
due to dislocation pile-ups, while the measured 
heat  effect includes both the elastic energy stored 
in dislocation pile-ups in the course of  deforma- 
tion, and the surface energy of  cavities. When the 
cavity contributions to heat  and volume effects 

are significant, the ratio of  these effects differs 
from that  for dislocation pile-ups. 

It follows from the experimental data used 
in [16] that  the strength o f  the sample decreases 
beyond the admitted level of  plastic deformation 
defined by the heat  and volume effects ratio. 
This means that microcavities affect the strength 
o f  the material and its density and heat  content  
almost equally. Data in Fig. 4 [43] show the 
method described. 

The methods described above were used [44] 
to separate thermally mobile dislocations from 
immobile ones; the density of  the thermally 

mobile dislocations was determined as well as the 
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Figure 7 Heat evolution rate --l),  volume change AV(t)/ 
V and change of electrical resistance zkR/R, at 300K 
during annealing at 4~ min -1 of twist-deformed (nd/l 
= 0.6) Cu-0.4 at % Zn alloy [2]. 



fraction of these dislocations in the total disloca- 
tion density for the case of strengthened crystals 
containing high dislocation densities were annealed 
(in this case the values cited above cannot be 
provided by either of  the known methods). The 
heat and volume effects measured under con- 
ditions of annealing of deformed, highly pure iron 
of the b c c lattice phase were used [38] (see Fig. 
5). Treatment of experimental data has shown 
that the immobile dislocation density amounts 
to about 2 x 1011 cm -2 (the corresponding heat 
effect makes up 0.42 cal g-1), while the density 
of thermally mobile dislocations is about 1011 
cm -2 (the thermal effect is 0.22 cal g-1 ). The heat 
effect caused by vacancy processes makes up 
0.03 cal g-1. The mobile dislocation density was 
determined as the ratio of the heat effect, due 
to thermally activated rearrangement and annihila- 
tion of mobile dislocations, and the total heat 
effect of  the dislocation nature. It turned out 
that mobile dislocations in hardened high-purity 
iron make up 1/3 of all the dislocations that existed 
before annealing. 

m 
? 
o L 

> -  

z 
o 

T IMC ( ra in )  

50 I 0 0  

i i i 

/ 
'E l0 B 

>- 

_~ ~ ~ I04 I 

OL 

EO 1 
E 

>- 
_ ~ 10 8 

o z iO 4 

# 0 

/ 

I 

I I ]O co0 ,~00 400 SO0 
TEMPERATURE (~ 

Figure 8 Atomic concentration of annihilated vacancies, 
change in density of relaxed dislocation pile-ups and 
density of annihilated dislocations density as functions 
of temperature during annealing at 4~ min -1 of de- 
formed Cu-0.4 at. % Zn alloy [48]. 

Independently, it was shown [38] on the 
basis of X-ray and electron microscopy investi- 
gations that thermally mobile dislocations moved 
by the mechanism of cross-slip. According to 
recent ideas, see for example p. 60 in [45], it 
is the mobility of dislocation screw components 
that determines the plasticity of b cc  metals. 
The treatment of experimental data [44] re- 
vealed the temperature dependence of therm- 
ally mobile dislocation density (of those disloca- 
tions which participated in the rearrangement of 
structure and annihilation) and of the concentra- 
tion of annihilated surplus vacancies to be drawn 
(Fig. 6). 

The experimental data on heat and volume 
effects and on electrical resistance during the 
annealing of deformed dilute copper-based solid 
solutions [46,47] (see Figs. 7, 9, 11 and 13), 
were used for a quantiative analysis of the kinetics 
of  thermodynamically irreversible processes and 
for an evaluation of the contribution of each 
process to the heat and volume effects and to 
electrical resistance. 
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Figure 9 Heat evolution rate --Qvolume change AV(t)/V 
and change of electrical resistance zXR/R, at 300 K during 
annealing at 4 ~ C rain -1 smithing-deformed (e = 20%) 
Cu-0.3 at. % Ga alloy [46]. 
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Figure 10 Atomic concentration of annihilated vacancies, 
change in density of relaxed dislocation pile-ups and 
density of annihilated dislocations as functions of tem- 
perature during annealing at 4~ min -1 of deformed 
Cu-0.3 at. % Ga alloy [48].  
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Figure 12 Atomic concentration of annihilated vacancies, 
atomic concentration of Ge atoms, precipitated onto 
dislocations and density of annihilated dislocations as 
functions of temperature during annealing at 4 ~ C min-1 
of deformed Cu-0.3 at. % Ge alloy [48]. 

Curves were p l o t t e d  o f  the  t e m p e r a t u r e  de- 

p e n d e n c e  (at constant rate heating) of annihilated 
vacancy concentration, the density change of 
relaxed dislocation pile-ups, the density of  anni- 
hilated dislocations, the concentration of  impurity 
atoms segregated on dislocations and the density 
of  'rearranged and annihilated thermally mobile 
dislocations. In cases when two or three pro- 
cesses occurred simultaneously it was possible to 
separate their contributions into the effects under 
s tudy ,  Figs. 8, 10, 12 and  14 show the  resul ts  

[48]. 
At  p resen t ,  a u t o m a t i c  i n s t r u m e n t s  are de- 

signed in the Institute of Metal Physics, Academy 
of Science of  the Ukrainian SSR, Kiev [49] 
which permit one to carry out a definite t i m e -  

Figure 11 Heat evolution rate - -Qvolume change AV(t)/V 
and change of electrical resistance AR/R, at 300 K during 
annealing at 4 ~ C rain -1 of smithing-deformed (e = 20%) 
Cu-0.3 at. % Ge alloy [47].  
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Figure 13 Heat evolution rate -- Q, volume change 2x V(t)/V 
and change of eleetrical resistance at 300 K ~R/R during 
annealing at 4~ rain -a of smithing-deformed (e = 20%) 
Cu=0.2 i  at .% As alloy [47]. 
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Figure 14 Atomic concentration of annihilated vacancies, 
atomic concentration of precipitated on dislocations As 
atoms and annihilated dislocations density as functions 
of temperature during annealing at 4~ rain -~ of de- 
formed Cu-0 .21  at. % As.alloy [48]. 

temperature regime, during which a simultaneous 
self-registeration of the volume and the enthalpy 
change rates in the sample is made. In addition 
they automatically process the data obtained. 
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